DPP - Daily Practice Problems

Na	me :										I	Date	:	
Sta	art Time	:								End	Time :			
	SYLLAE	8US : (CURI	RENT ELE	P	Y-3 : Wheatst appli	S one b catior	ridge, Me	C eter brid	S dge,	Potentior	neter-	princ	38 Siple and its
Мах	. Marks	: 10	0										Т	ime : 60 min
• • •	The Daily circle/ bub You have Each corre deducted The sheet syllabus. F After com to analyse	Praction ble in to evalue f no b f follow Refer s bleting your	ce Pro the f luate swer v pubble vs a p yllabu the s perfor	oblem Shee Response G your Respo vill get you is filled. Ke particular sy s sheet in t sheet check mance and	et contains rid provide onse Grids 4 marks eep a time yllabus. D the startin your ans I revise th	s 25 MCQ's. For ed on each page yourself with and 1 mark sh er in front of yo o not attempt g of the book for wers with the se e areas which	or eac ge. the he all be ou and the sl for the solutio emerg	h questio deduced d stop im neet befo e syllabus n booklet e out as	n only ution b for eac mediate re you of all t : and co weak i	one ookle ch inc ely at have the D omple n you	option is t. the end of complete PP sheets ete the Re ur evaluati	correct wer. N of 60 r d your sult Gr on.	t. Da lo ma nin. r prej rid. Fi	rken the correct ark will be given/ paration for that inally spend time
DIR ques of w	ECTIONS tions. Eacl hich ONL	5 (Q.1 n quest Y ON	-Q.1 tion h E cho	6) : There as 4 choices ice is corre	are 16 m s (a), (b), (ct.	ultiple choice (c) and (d), out	Q.	3 In a point 2Ω , the resistance of 1Ω and 1Ω a	otention gth 240 he bala	meter cm. (incing	experime On shunting length be	nt the lang the comes	balan cell v s 120	ncing with a cell is with a resistance of cm. The internal
Q.1	A Potentic with 490 g potential wire is	ometer Ω resis gradie	wire tance nt, th	of length 1 and 2V bat en resistan	m is conr ttery. If 0.2 ce of the	nected in series 2 mV/cm is the potentiometer	Q.	(a) 4 4 A pote resista potent	entiom ince 10 ial diff	(b) eter (0) $\Omega \cdot I$ erenc	2Ω consists o It is connected per unit	(c) of a wi ected to length	1 Ω ire of o cel n of the second se	(d) 0.5 Ω f length 4 m and l of emf 2 V. The he wire will be
Q.2	(a) 4.9 C Two resis bridge. Th resistance smaller of value of th (a) 3	2 (tances ne bala e of 15 f the t ne sma	b) 7. are nce p ohn wo. T ller r b) 6	9 Ω (c connected : boint is 20 c is is conne he null poi esistance in (c	c) 5.9 Ω in two gates from the condition of the condit	 (d) 6.9 Ω aps of a metre be zero end. A be eries with the be to 40 cm. The (d) 12 	Q.	(a) 0 5 In give of 5 Ω emf of (a) 0 (b) 4 (c) 0 (d) 8	0.5 V/m en figur 2 and le f 0.4 V 0.4 m m .8 m m	(b) re, the ngth is	0 10 V/m e potentior 10 m. The	(c) neter w balan A	2 V vire A cing 	/m (d) 5 V/m AB has a resistance length AM for the $R=45\Omega$ M B B
Re	SPONSE G	RID	1.	@bC(d 2.	@bCd	3.	ab(୦୦	4.	@bC)@	5.	abcd
						—— Space for	Rougi	h Work —						

Get More Learning Materials Here : 📕

EBD_71

- **Q.6** In the circuit shown in the figure, the current flowing in 2Ω resistance
 - $\begin{array}{c} 10 \ \Omega \\ \text{(a)} \ 1.4 \text{ A} \\ \text{(b)} \ 1.2 \text{ A} \\ \text{(c)} \ 0.4 \text{ A} \end{array}$
 - (c) 0.4 A
 - (d) 1.0 A
- **Q.7** For the post office box arrangement to determine the value of unknown resistance the unknown resistance should be connected between

- (a) B and C (b) C and D (c) A and D (d) B_1 and C_1 Q.8 The e.m.f. of a standard cell balances across 150 cm length of a wire of potentiometer. When a resistance of 2Ω is connected as a shunt with the cell, the balance point is obtained at 100 cm. The internal resistance of the cell is (a) 0.1 Ω (b) 1 Ω (c) 2 Ω (d) 0.5 Ω
- **Q.9** Five resistors are connected as shown in the diagram. The equivalent resistance between A and B is
 - (a) 6Ω $5 \Omega \sqrt{-1} \kappa^2 4 \Omega$
 - (b) 9 Ω
 - (c) 12 Ω
 - (d) 15Ω
- **Q.10** A potentiometer has uniform potential gradient. The specific resistance of the material of the potentiometer wire is 10^{-7} ohm-meter and the current passing through it is 0.1 ampere; cross-section of the wire is 10^{-6} m². The potential gradient along the potentiometer wire is
 - (a) 10^{-4} V/m (b) 10^{-6} V/m
 - (c) 10^{-2} V/m (d) 10^{-8} V/m
- **Q.11** Resistance in the two gaps of a meter bridge are 10 ohm and 30 ohm respectively. If the resistances are interchanged the balance point shifts by

(a) 33.3 cm (b) 66.67 cm (c) 25 cm (d) 50 cm

- DPP/ P (38)

Q.12 A potentiometer has uniform potential gradient across it. Two cells connected in series (i) to support each other and (ii) to oppose each other are blanced over 6m and 2m respectively on the potentiometer wire. The e.m.f's of the cells are in the ratio of

(a) 1:2 (b) 1:1 (c) 3:1 (d) 2:1

Q.13 In a potentiometer experiment two cells of e.m. $f E_1$ and E_2 are used in series and in conjunction and the balancing length is found to be 58 cm of the wire. If the polarity of E_2 is reversed, then the balancing length becomes 29 cm.

The ratio $\frac{E_1}{E_2}$ of the e.m.f. of the two cells is

- (a) 1:1
 (b) 2:1
 (c) 3:1
 (d) 4:1
 Q.14 The resistance of a 10 meter long potentiometer wire is 1 ohm/metre. A cell of e.m.f. 2.2 volts and a high resistance box are connected in series with this wire. The value of resistance taken from resistance box for getting potential gradient of 2.2 millivolt/metre will be
- (a) 790 Ω (b) 810 Ω (c) 990 Ω (d) 1000 Ω Q.15 In the shown arrangement of the experiment of the meter bridge if AC corresponding to null deflection of galvanometer is x, what would be its value if the radius of the wire AB is doubled

- (a) End correction
- (b) Index error
- (c) Due to temperature effect
- (d) Random error

Response	6. @bcd	7. abcd	8. @bCd	9. abcd	10. @bCd
Grid	11. @b©d 16. @b©d	12.@b©d	13. @ b©d	14. @ b©d	15. @b©d
	0000				

90

- Space for Rough Work

Get More Learning Materials Here : 📕

DPP/ P (38)

DIRECTIONS (Q.17-Q.19) : In the following questions, more than one of the answers given are correct. Select the correct answlers and mark it according to the following codes:

Codes :

(a) 1, 2 and 3 are correct

(b) 1 and 2 are correct (c) 2 and 4 are correct (d) 1 and 3 are correct

- **Q.17** Which of the following statements are correct?
 - (1) Voltmeter should have high resistance.
 - (2) Ammeter should have low resistance.
 - (3) Voltmeter is placed in parallel across the conductor in a circuit.
 - (4) Ammeter is placed in parallel across the conductor in a circuit.

Q.18 Which are correct statements?

- (1) The Wheatstone bridge is most sensitive when all the four resistances are of the same order
- (2) Kirchhoff's first law (for currents meeting at a junction in an electric circuit) expresses the conservtion of charge.
- (3) The rheostat can be used as a potential divider.
- (4) In a balanced Wheatstone bridge, interchanging the positions of galvanometer and cell affects the balance of the bridge.

Q.19 Figure shows a balanced Wheatstone's bridge

- (1) If P is slightly increased, the current in the galvanometer flows from A to C.
- (2) If P is slightly increased, the current in the galvanometer flows from C to A.
- (3) If Q is slightly increased, the current in the galvanometer flows from C to A.
- (4) If Q is slightly increased, the current in the galvanometer flows from A to C.

DIRECTIONS (Q.20-Q.22) : Read the passage given below and answer the questions that follows :

A battery is connected to a potentiometer and a balance point is obtained at 84 cm along the wire. When its terminals are connected by a 5 Ω resistor, the balance point changes to 70 cm Q.20 Calculate the internal resistance of the cell.

- (a) 4Ω (b) 2Ω (c) 5Ω (d) 1Ω
- Q.21 Find the new position of the balance point when 5Ω resistance is replaced by 4Ω resistor.

(a) 26.5 cm (b) 52 cm (c) 67.2 cm (d) 83.3 cm

- **Q.22** How can we change a galvanometer with $R_e = 20.0\Omega$ and $I_{fs} = 0.00100$ A into a voltmeter with a maximum range of 10 0 V?
 - (a) By adding a resistance 9980 Ω in parallel with the galvanometer
 - (b) By adding a resistance 9980 Ω in series with the galvanometer
 - (c) By adding a resistance 8890 Ω in parallel with the galvanometer
 - (d) By adding a resistance 8890 Ω in series with the galvanometer

DIRECTIONS (Q. 23-Q.25) : Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices. only one of which is the correct answer. You have to select the correct choice.

- Statement-1 is True, Statement-2 is True; Statement-2 is a (a) correct explanation for Statement-1.
- Statement-1 is True, Statement-2 is True; Statement-2 is (b) NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.
- **Q.23 Statement -1 :** In meter bridge experiment, a high resistance is always connected in series with a galvanometer.

Statement -2 : As resistance increases current through the circuit increases.

Response	17.@bCd	18.@b©d	19. @bcd	20. @bCd	21. @bcd
Grid	22.@b©d	23.@bCd			

Space for Rough Work

Get More Learning Materials Here :

4

Q.24 Statement -1: A potentiometer of longer length is used for accurate measurement.

Statement -2: The potential gradient for a potentiometer of longer length with a given source of e.m.f. becomes small.

Q.25 Statement -1: The e.m.f. of the driver cell in the potentiometer experiment should be greater than the e.m.f. of the cell to be determined. Statement -2: The fall of potential across the

Statement -2: The fall of potential across the potentiometer wire should not be less than the e.m.f. of the cell to be determined.

RESPONSE GRID 24. (a) b) c) d) 25. (a) b) c) d)

DAILY PRACTICE PROBLEM SHEET 38 - PHYSICS							
Total Questions	25	Total Marks	100				
Attempted		Correct					
Incorrect		Net Score					
Cut-off Score	26	Qualifying Score	44				
Success Gap = Net Score – Qualifying Score							
Net Score = (Correct × 4) – (Incorrect × 1)							

Space for Rough Work

Get More Learning Materials Here : 📕

108

DAILY PRACTICE PROBLEMS

(a) Potential gradient $x = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L}$ 1.

$$\Rightarrow \frac{0.2 \times 10^{-3}}{10^{-2}} = \frac{2}{(R+490+0)} \times \frac{R}{1} \Rightarrow R = 4.9\Omega.$$

50

(c) Let S be larger and R be smaller resistance connected 2. in two gaps of meter bridge.

$$\therefore S = \left(\frac{100 - l}{l}\right) R = \frac{100 - 20}{20} R = 4R \qquad \dots \dots (i)$$

When 15Ω resistance is added to resistance R, then

From equations (i) and (ii) $R = 9\Omega$

3. (b)
$$r = R\left(\frac{l_1}{l_2} - 1\right) = 2\left(\frac{240}{120} - 1\right) = 2\Omega$$

4. (a) Potential difference per unit length

$$=\frac{V}{L}=\frac{2}{4}=0.5V/m$$

5. (d)
$$E = \frac{e}{(R+R_h+r)} \cdot \frac{R}{L} \times l \Rightarrow 0.4 = \frac{5}{(5+45+0)} \times \frac{5}{10} \times l$$

 $\Rightarrow l = 8m$

6. (d) Current through
$$2\Omega = 1.4 \left\{ \frac{(25+5)}{(10+2)+(25+5)} \right\} = 1$$
A

(c) Post office box is based on the principle of 7. Wheatstone's bridge.

8. **(b)** Using
$$r = R\left(\frac{l_1}{l_2} - 1\right) = 2\left(\frac{150}{100} - 1\right) = 1\Omega$$

9. (a) Since the given bridge is balanced, hence there will be no current through 9Ω resistance. This resistance has no effect and must be ignored in the calculations.

$$R_{AB} = \frac{9 \times 18}{27} = 6\Omega$$

10. (c) Potential gradient
$$(x) = \frac{i\rho}{A} = \frac{0.1 \times 10^{-7}}{10^{-6}} = 10^{-2} V/m$$

- DPP/ P (38)

11. (d)
$$S = \left(\frac{100 - l}{l}\right) R$$

Initially,
$$30 = \left(\frac{100-l}{l}\right) \times 10 \Rightarrow l = 25cm$$

Finally,
$$10 = \left(\frac{100-l}{l}\right) \times 30 \Rightarrow l = 75cm$$

So, shift =50cm.

12. (d)
$$\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2} = \frac{(6+2)}{(6-2)} = \frac{2}{1}$$

13. (c)
$$\frac{E_1}{E_2} = \frac{l_1 + l_2}{l_1 - l_2} = \frac{58 + 29}{58 - 29} = \frac{3}{1}$$

14. (d)

$$E = \frac{e}{(R+R_h+r)} \frac{R}{L} \times l = \frac{2}{(10+40+0)} \times \frac{10}{1} \times 0.4 = 0.16 \,\mathrm{V}$$

Resistance of the part AC

$$R_{AC} = 0.1 \times 40 = 4\Omega$$
 and $R_{CB} = 0.1 \times 60 = 6\Omega$
In balanced condition $\frac{X}{6} = \frac{4}{6} \Rightarrow X = 4\Omega$
Equivalent resistance $R_{aq} = 5\Omega$

so current drawn from battery $i = \frac{5}{5} = 1A$.

16. (a)
$$r = \left(\frac{l_1 - l_2}{l_2}\right) \times R' \Rightarrow r = \left(\frac{55 - 50}{50}\right) \times 10 = 1\Omega$$

Get More Learning Materials Here : 📕

CLICK HERE

🕀 www.studentbro.in

DPP/ P (38)

$$x = \frac{V}{L} = \frac{e}{(R+R_h+r)} \frac{R}{L}$$
$$\Rightarrow 2.2 \times 10^{-3} = \frac{2.2}{(10+R_h)} \times 1 \Rightarrow R' = 990\Omega$$

18. (a)
$$E = xl = i\rho l \Longrightarrow i = \frac{E}{\rho l} = \frac{2.4 \times 10^{-3}}{1.2 \times 5} = 4 \times 10^{-4} A$$

19. (b) Give circuit is a balanced Wheaststone bridge circuit, hence it can be redrawn as follows

$$\mathbf{R}^{\mathrm{AB}} = \frac{12 \times 6}{(12+6)} = 4\,\Omega.$$

- **20.** (a) Balancing length is independent of the cross sectional area of the wire.
- **21.** (a) In meter bridge experiment, it is assumed that the resistance of the L shaped plate is negligible, but actually it is not so. The error created due to this is called, end error. To remove this the resistance box and the unknown resisance must be interchanged and then the mean reading must be taken.
- 22. (a) Ammeter is always connected in series with circuit.
- 23. (a) In balanced Wheastone bridge, the arms of galvanometer and cell can be interchanged without affecting the balance of the bridge.
- 24. (d)

109

If P is slightly icnreased, potential of C will decrease.

Hence current will from A to C.

If Q is slightly increased, potential of C will increase. Hence current will flow from C to A.

$$R_s = \frac{V}{I_{fr}} - R_c = \frac{10.0V}{0.00100A} - 20.0\Omega = 9980\Omega$$

At full-scale deflection, $V_{ab} = 10.0V$, voltage across the meter is 0.0200 V, voltage across R_s is 9.98 V, and current through the voltmeter is 0.00100 A. In this case most of the voltage appears across the series resistor.

The equivalent meter resistance is $R_{eq} = 20.0 \Omega + 9980 \Omega$ = 10,000 Ω . Such a meter is described as a "1,000 ohmsper-volt meter" referring to the ratio of resistance to fullscale deflection. In normal operation the current through the circuit element being measured is much greater than 0.00100 A, and the resistance between points a and b in the circuit is much less than 10,000 Ω . So the voltmeter draws off only a small fraction of the current and disturbs, only slightly the circuit being measured.

- 25. (d), 26. (c), 27. (b)
- 28. (d) The resistance of the galvanometer is fixed. In meter bridge experiments, to protect the galvanometer from a high current, high resistance is connected to the galvanometer in order to protect it from damage.
- **29.** (a) Sensitivity $\propto \frac{1}{\text{Potential gradiant}} \propto (\text{Length of wire})$
- **30.** (a) If either the e.m.f. of the driver cell or potential difference across the whole potentiometer wire is lesser than the e.m.f. of the experimental cell, then balance point will not obtained.

